Learning with kernel machine architectures

نویسنده

  • Theodoros Evgeniou
چکیده

This thesis studies the problem of supervised learning using a family of machines, namely kernel learning machines. A number of standard learning methods belong to this family, such as Regularization Networks (RN) and Support Vector Machines (SVM). The thesis presents a theoretical justification of these machines within a unified framework based on the statistical learning theory of Vapnik. The generalization performance of RN and SVM is studied within this framework, and bounds on the generalization error of these machines are proved. In the second part, the thesis goes beyond standard one-layer learning machines, and probes into the problem of learning using hierarchical learning schemes. In particular it investigates the question: what happens when instead of training one machine using the available examples we train many of them, each in a different way, and then combine the machines? Two types of ensembles are defined: voting combinations and adaptive combinations. The statistical properties of these hierarchical learning schemes are investigated both theoretically and experimentally: bounds on their generalization performance are proved, and experiments characterizing their behavior are shown. Finally, the last part of the thesis discusses the problem of choosing data representations for learning. It is an experimental part that uses the particular problem of object detection in images as a framework to discuss a number of issues that arise when kernel machines are used in practice. Thesis Supervisor: Tomaso Poggio Title: Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel machines with two layers and multiple kernel learning

In this paper, the framework of kernel machines with two layers is introduced, generalizing classical kernel methods. The new learning methodology provide a formal connection between computational architectures with multiple layers and the theme of kernel learning in standard regularization methods. First, a representer theorem for two-layer networks is presented, showing that finite linear com...

متن کامل

Scaling Learning Algorithms towards AI

One long-term goal of machine learning research is to produce methods that are applicable to highly complex tasks, such as perception (vision, audition), reasoning, intelligent control, and other artificially intelligent behaviors. We argue that in order to progress toward this goal, the Machine Learning community must endeavor to discover algorithms that can learn highly complex functions, wit...

متن کامل

Kernel Methods for Deep Learning

We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustr...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Learning Multiple Levels of Representations with Kernel Machines

We propose a connectionist-inspired kernel machine model with three key advantages over traditional kernel machines. First, it is capable of learning distributed and hierarchical representations. Second, its performance is highly robust to the choice of kernel function. Third, the solution space is not limited to the span of images of training data in reproducing kernel Hilbert space (RKHS). To...

متن کامل

Optimizing Kernel Machines using Deep Learning

Building highly non-linear and non-parametric models is central to several state-of-the-art machine learning systems. Kernel methods form an important class of techniques that induce a reproducing kernel Hilbert space (RKHS) for inferring non-linear models through the construction of similarity functions from data. These methods are particularly preferred in cases where the training data sizes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000